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Introduction

• The basic assumption underlying Montague Grammar is that 
the meaning of a sentence is given by its truth conditions.

- “Peter reads a book” is true iff Peter reads a book

• Truth conditions can be represented by logical formulae

- “Peter reads a book” → ∃x(book(x) ∧ read(p*, x))

• Indirect interpretation:

- natural language → logic → models



Compositionality

• An important principle underlying Montague Grammar is 
the so called “principle of compositionality”

The meaning of a complex expression is a function of the 
meanings of its parts, and the syntactic rules by which they are 
combined (Partee & al, 1993)



Compositionality

[[ John reads a book ]] =

C1([[ John]], [[reads a book]] ) =

C1([[ John]], C2([[reads]] , [[a book]] ) =

C1([[ John]], C2([[reads]] , C3([[a]], [[book]]))

John reads a book

John reads a book

reads a book

a book



Representing Meaning

• First order logic is in general not an adequate formalism to 
model the meaning of natural language expressions.

• Expressiveness

- “John is an intelligent student” ⇒ intelligent(j*) ∧ stud(j*)

- “John is a good student” ⇒ good(j*) ∧ stud(j*) ??

- “John is a former student” ⇒ former(j*) ∧ stud(j*) ???

• Representations of noun phrases, verb phrases, …

- “is intelligent” ⇒ intelligent( ∙ )  ?

- “every student” ⇒ ∀x(student(x) ⇒ ⋅ )  ???



Type Theory

• First order logic provides only n-ary first order relations, 
which is insufficient to model natural language semantics.

• Type theory is more expressive and flexible – it provides 
higher-order relations and functions of different kinds. 

• Some type theoretical expressions

- “John is a good student” ⇒ good(student)(j*)

- “is intelligent” ⇒ intelligent

- “every student” ⇒ λP∀x(student(x) ⇒ P(x))



Types

• A set of basic types, for instance {e, t}

- e is the type of individual terms (“entity”)

- t is the type of formulas (“truth value”)

• The set T of types is the smallest set such that

- if σ is a basic type, then σ is a type

- if σ, τ are types, then ‹σ, τ› is a type

• The type ‹σ, τ› is the type of functions that map arguments 
of type σ to values of type τ.



Some Example Types

• One-place predicate constant: sleep, walk, student, … 

- ‹e, t›

• Two-place relation: read, write, …

- ‹e, ‹e,t››

• Attributive adjective: good, intelligent, former, …

- ‹‹e,t›, ‹e,t››



Vocabulary

• Pairwise disjoint, possibly empty sets of non-logical 
constants: 

- Conτ, for every type τ
• Infinite and pairwise disjoint sets of variables: 

- Varτ, for every type τ
• Logical constants: 

- ∀, ∃, ∧, ¬, …, λ



Syntax

• For every type τ, we define the set of meaningful 
expressions MEτ as follows:

- Conτ ⊆ MEτ and Varτ ⊆ MEτ, for every type τ
- If α ∈ ME‹σ, τ› and β ∈ MEσ, then α(β) ∈ MEτ.
- If A, B ∈ MEt, then so are ¬A, (A ∧ B), (A ⇒ B), … 

- If A ∈ MEt, then so are ∀xA and ∃xA, where x is a  
variable of arbitrary type. 

- If α, β are well-formed expressions of the same type,  
then α = β ∈ MEt.

- If α ∈ MEτ and x ∈ Varσ, then λxα ∈ ME‹σ, τ›.



Some Examples

• “John works.”

• “Every student works.”

j* ∈ MEe     work ∈ ME‹e, t›

work(j*)

every ∈ ME‹‹e, t›, ‹‹e, t›, t›     student ∈ ME‹e, t›

every(student) ∈ ME‹‹e, t›, ‹‹e, t›, t›    work ∈ ME‹e, t›

every(student)(work) ∈ MEt



Semantics

• Let U be a non-empty set of entities. For every type τ, the 
domain of possible denotations Dτ is  given by

- De = U

- Dt = {0,1}

- D‹σ, τ› = the set of functions from Dσ to Dτ

• A model structure is a structure M = (UM,  VM)

- UM is a non-empty set of individuals

- VM is a function that assigns every non-logical constant of 
type τ an element of Dτ.

• Variable assignment g:  Varτ → Dτ



Semantics

• Let M be a model structure and g a variable assignment

- [[α]]M,g = VM(α), if α is a constant

- [[α]]M,g = g(α), if α is a variable

- [[α(β)]]M,g = [[α]]M,g([[β]]M,g)

- [[¬φ]]M,g = 1 iff [[φ]]M,g = 0

- [[φ∧ψ]]M,g = 1 iff [[φ]]M,g = 1 and [[ψ]]M,g = 1,  etc. 

- [[∃vφ]]M,g = 1 iff there is a ∈ Dτ such that [[φ]]M,g[v/a] = 1 

- [[∀vφ]]M,g = 1 iff for all a ∈ Dτ, [[φ]]M,g[v/a] = 1

- [[α = β]]M,g = 1iff [[α]]M,g = [[β]]M,g



Semantics of λ-Expressions

• Let M be a model structure and g a variable assignment

- If α ∈ MEτ and v ∈ Varσ, then [[λvα]]M,g is that function f 
from Dσ to Dτ such that for any a ∈ Dσ, f(a) = [[α]]M,g[v/a|

• “Syntactic shortcut:” β-reduction

- (λxφ)(ψ) ≡ φ[ψ/x]

" if all free variables in ψ are free for x in φ
- A variable y is free for x in φ if no free occurence of x in 
ψ is in the scope of a ∃y, ∀y, λy



Noun Phrases

• “John works” → work(j*)

• “A student works.” → ∃x(student(x) ∧ work(x))

• “Every student works.” → ∀x(student(x) ⇒ work(x))

• “John and Mary work.” → work(j*) ∧ work(m*)



Noun Phrases

• Using λ-abstraction, noun phrases can be given a uniform 
interpretation as “generalized quantifiers” 

- “John” → λP.P(j*)

- “A student” → λP∃x(student(x) ∧ P(x))

- “Every student” → λP∀x(student(x) ⇒ P(x))

- “John and Mary” → λP.P(j*) ∧ P(m*)



Noun Phrases

• “John works”

• “Every student works.”

λP.P(j*) ∈ ME‹‹e, t›, t›  work ∈ ME‹e, t›

(λP.P(j*))(work) ∈ MEt

work(j*) ∈ MEt

λP∀x(student(x) ⇒ P(x)) ∈ ME‹‹e, t›, t›  work ∈ ME‹e, t›

(λP∀x(student(x) ⇒ P(x)))(work) ∈ MEt

∀x(student(x) ⇒ work(x)) ∈ MEt



Determiners

• Determiners like “a,” “every,” “no” denote higher order 
functions taking (denotations of) common nouns and return 
a higher order relation.

- “every” → λPλQ∀x(P(x) ⇒ Q(x))

- “some” → λPλQ∃x(P(x) ∧ Q(x))

- “no” → λPλQ¬∃x(P(x) ∧ Q(x))

• “Every student”
λPλQ∀x(P(x) ⇒ Q(x))              student

(λPλQ∀x(P(x) ⇒ Q(x)))(student)

λQ∀x(student(x) ⇒ Q(x))



A Montague-Style Grammar
for a Fragment of English



Syntactic Component

• Montague Grammar is based upon (a particular version of) 
categorial grammar.

• The set of categories is the smallest set such that

- S, IV, CN are categories

- If A, B are categories, then A/B is a category

• Some categories

- IV/T	 [= TV]	 	 transitive verbs

- S/IV	 [= T]	 	 terms (= noun phrases)

- T/CN	 	 	 determiners



Lexicon

• For each category A, we assume a possibly empty set BA of 
basic expressions of category A.

• For instance

- BT = { John, Mary, he0, he1, … }

- BCN = { student, man, woman, … }

- BIV = { sleep, work, … }

- BIV/T = { read, … }

- BT/CN = { a, every, no, the, … }



Syntactic Rules (Simplified)

• General rule schema:

- BA ⊆ PA

- If α ∈ PA and δ ∈ PB/A, then δα ∈ PB

• “Every student works”

every student works, S

every student, S/IV works, IV

every, (S/IV)/CN student, CN



Translation into Type Theory

• A translation of natural language into type theory is a 
homomorphism that assigns each α ∈ PA an α’ ∈ MEf(A) 

• f maps categories to types as follows

- f(S) = t

- f(CN) = f(IV) = ‹e, t›

- f(A/B) = ‹f(B), f(A)›



Translation: Lexical Categories

• “John” → λP.P(j*)

• “every” → λPλQ∀x(P(x) ⇒ Q(x))

• “a” → λPλQ∃x(P(x) ∧ Q(x))

• “student” → student

• “book” → book

• “works” → work

• …



Translation: Phrasal Categories

• Syntactic rule:

- If α ∈ PA and δ ∈ PB/A, then δα ∈ PB

• Corresponding translation rule:

- If α → α’, δ → δ’, then δα → δ’(α’)

B ! "'(#') 

B/A ! "' A ! #'



“Every student works”

• “every” → λPλQ∀x(P(x) ⇒ Q(x)) 

• “student” → student

• “every student” → λPλQ∀x(P(x) ⇒ Q(x))(student) 
= λQ∀x(student(x) ⇒ Q(x))

• “every student works” → λQ∀x(student(x) ⇒ Q(x))(work)
= ∀x(student(x) ⇒ work(x))

every student works, S

every student, S/IV works, IV

every, (S/IV)/CN student, CN



Transitive Verbs

• Transitive verbs have category IV/T (= IV/(S/IV)), the 
corresponding type is ‹‹‹e, t›, t›, ‹e, t››

• On the other hand, transitive verbs like “read,” “present,” … 
denote a two-place first order relation (type ‹e, ‹e, t››)

- “John reads a book” → ∃y(book(y) ∧ read(y)(j*))

• “read” → λQλx.Q(λy.read*(y)(x))

- read* ∈ ME‹e, ‹e, t››



“Every student reads a book”

every student reads a book, S

every student, T read a book, IV

reads, IV/Tevery, T/CN student, CN a book, T

a, T/CN book, CN



“Every student reads a book”

• “a book” → λP∃z(book(z) ∧ P(z))

• “reads” → λQλx.Q(λy.read*(y)(x))

• “reads a book” 
→ λQλx.Q(λy.read*(y)(x))(λP∃z(book(z) ∧ P(z)))
→ λx.λP∃z(book(z) ∧ P(z))(λy.read*(y)(x))
→ λx.∃z(book(z) ∧ (λy.read*(y)(x))(z))
→ λx.∃z(book(z) ∧ read*(z)(x))

• “every student reads a book”
→ λP∀w(student(w) ⇒ P(w))(λx.∃z(book(z) ∧ read*(z)(x))
→ ∀w(student(w) ⇒ ∃z(book(z) ∧ read*(z)(w)))



Scope

• Sentences with multiple scope bearing operators – e.g., 
quantified noun phrases or negations – are often 
ambiguous.

• “Every student reads a book”

- ∀x(student(x) ⇒ ∃y(book(y) ∧ read(y)(x)))

- ∃y(book(y) ∧ ∀x(student(x) ⇒ read(y)(x)))

• “Every student did not pay attention”

- ∀x(student(x) ⇒ ¬ pay attention(x))

- ¬ ∀x(student(x) ⇒ pay attention(x))



The Problem

• The principle of compositionality implies that syntactic 
derivation trees are mapped to a unique type theoretical 
semantic representation.

• Hence the second reading cannot be derived, unless …

every student reads a book, S, S2

every student, T read a book, IV, S4

read, IV/Tevery, T/CN student, CN a book, T, S3

a, T/CN book, CN



“Montague’s Trick”

• Special rule of quantification (aka “Quantifying-in”)

- Terms α ∈ PT can combine with sentences ξ ∈ PS to 
form a sentence ξ’ ∈ PS, 

- where ξ’ is obtained from ξ by replacing all occurrences 
of “hei” with α.

- For instance: “a book” + “… he1 …” = “… a book …”

• Sentences can be assigned distinct syntactic derivations



“Montague’s Trick”

• “he0” → λP.P(x0)

• “every student reads he0” → ∀y(student(y) ⇒ read(x0)(y))

• “every student reads a book”
→ λP∃x(book(x) ∧ P(x))(λx0∀y(student(y) ⇒ read(x0)(y)))
→ ∃x(book(x) ∧ ∀y(student(y) ⇒ read(x)(y)))

every student reads he0, S

every student, T reads he0, IV

reads, IV/T he0, T

a book, T

a, T/CN book, CN

every student reads a book, S

every, T/CN student, CN



“Montague’s Trick”

• The quantification rule allows to derive different scope 
readings of ambiguous sentences, but …

- the syntax is made more ambiguous than it actually is

- no surface oriented analysis



Summary

• The principle of compositionality

- links syntax and semantics of natural language

• Type theory offers

- flexibility

- expressiveness

• Montague like semantics construction …

- follows the principle of compositionality

- assumes a strict one-to-one correspondence between 
syntax and corresponding semantic representations,

- but needs a “trick” to model scope ambiguities



3.9.19 Montague Grammar Montague grammar is a theory of semantics, and of the relation of semantics to syntax, originally developed
by the logician Richard Montague (1930-1971) and subsequently modified and extended by linguists, philosophers, and logicians.
Classical Montague grammar had its roots in logic and the philosophy of language; it quickly became influential in linguistics, and
linguists have played a large role in its evolution into contemporary formal semantics. â€¢ The basic assumption underlying Montague
Grammar is that the meaning of a sentence is given by its truth conditions. - â€œPeter reads a bookâ€ ​ is true iff Peter reads a book. â€¢
Truth conditions can be represented by logical formulae. - â€œPeter reads a bookâ€ ​ â†’ âˆƒx(book(x) âˆ§ read(p*, x)). â€¢ Indirect
interpretation: - natural language â†’ logic â†’ models. Compositionality. Montague grammar is an approach to natural language
semantics, named after American logician Richard Montague. The Montague grammar is based on formal logic, especially higher-order
predicate logic and lambda calculus, and makes use of the notions of intensional logic, via Kripke models. Montague pioneered this
approach in the 1960s and early 1970s. Montague's thesis was that natural languages (like English) and formal languages (like
programming languages) can be treated in the same way


