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Abstract

A k-uniform hypergraph H is a pair (V, ε), where V is a set V =

{v1, v2, . . . , vn} of n vertices and ε is a family of k-subset of V called

hyperedges. A cycle of length l of H is a sequence (v1, e1, . . . , vl, el, v1),

where v1, v2, . . . , vl are distinct vertices, and e1, e2, . . . , el are k-edges

of H and vi, vi+1 ∈ ei, 1 ≤ i ≤ l, where addition on the subscripts is

modulo n, ei 6= ej for i 6= j. We consider the problem of constructing

such decompositions for complete uniform hypergraphs. In this paper

we apply design theory to give the decomposition of complete 3-uniform

hypergraph K3
n into cycles for n = 7, 10.
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1 Introduction

A decomposition of a graph G = (V,E) is a partition of the edge-set E; a

Hamiltonian decomposition of G is a decomposition into Hamiltonian cycles.

The problem of constructing Hamiltonian decompositions is a long-standing

and well-studied one in graph theory; in particular, for the complete graph

Kn, it was solved in the 1890s by Walecki [1]. Walecki showed that Kn has a

Hamiltonian decomposition if and only if n is odd, while if n is even Kn has a

decomposition into Hamiltonian cycles and a perfect matching. As with many

problems in graph theory, it seems natural to attempt a generalisation to hy-

pergraphs. Indeed, the notion of Hamiltonicity was first generalised to uniform

hypergraphs by Berge in his 1970 book [2]. His definition of a Hamiltonian

cycle in a hypergraph H = (V,E) is a sequence (v0, e1, v1, e2, · · · , vn−1, en, v0),

where {v0, · · · , vn} = V , and e1, · · · , en are distinct elements of E, such that

the hyperedge ei contains both vi+1 and vi(modulo n). The study of decompo-

sitions of complete 3-uniform hypergraphs into cycles of this type was begun

by Bermond et al in the 1970s [3] and was completed by Verrall in 1994 [4]. A

k-uniform hypergraph H is a pair (V, ε), where V = {v1v2, . . . , vn} is a set of

n vertices and ε is a family of k-subset of V called hyperedges. If ε consists of

all k-subsets of V , then H is a complete k-uniform hypergraph on n vertices

and is denoted by Kk
n. At the same time we may refer a vertex vi ∈ V to vi+n.

A cycle of length l of H is a sequence of the form

(v1, e1, v2, e2, . . . , vl, el, v1),

where v1, v2, . . . , vl are distinct vertices, and e1, e2, . . . , el are k-edges of H,

satisfying

(i) vi, vi+1 ∈ ei, 1 ≤ i ≤ l, where addition on the subscripts is modulo n,

and

(ii) ei 6= ej for i 6= j. This cycle is known as a Berge cycle, having been

introduced by Berge in [1]. A cycle of length l decomposition ofH is a partition

of the hyperedges of H into cycles of length l.

The set of cycles of length l of complete 3-uniform hypergraph K3
n, say C1,

. . ., Cm, is called cycles of length l decomposition if
⋃m

i=1
ε(Ci) = ε(K3

n) and

ε(Ci) ∩ ε(Cj) = ∅ for i 6= j. In this paper, we apply design theory to give

decomposition of complete 3-uniform hypergraph.
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2 Main results

We notice a Hamiltonian cycle in Kk
n is an example of a 1-(n, k, k) design;

clearly, each vertex (i.e. point) lies in exactly k edges. Therefore a Hamiltonian

decomposition of Kk
n is, in the language of design theory, a large set of 1-

(n, k, k) designs. So one may ask what known results in the design theory

literature may be of use to us here.

Definition 2.1. Let v, k and λ be integers such that v ≥ k ≥ 2 and λ ≥ 1.

Let X be a finite set of elements, called points, and let B be a finite collection

of subsets of X, called blocks. The pairs (X,B) is called a (v, k, λ) balanced in-

complete block design or, simply, a (v, k, λ)−BIBD, if the following conditions

hold:

(i) |X| = v.

(ii) |B| = k for all B ∈ B.

(iii) Every pairs of distinct points is contained in exactly λ blocks.

The set {v, k, λ} is called the set of parameters of the BIBD (X,B). We

also use notation D = (X,B).

Definition 2.2. Let v, k and λ be integers such that v ≥ k ≥ 2 and λ ≥ 1.

Let X be a finite set of elements, called points, and let B be a finite collection

of subsets of X, called blocks. The pairs (X,B) is called a t−(v, k, λ) design

or, simply, a t−design, if the following conditions hold:

(i) |X| = v.

(ii) |B| = k for all B ∈ B.

(iii) Every subset of t distinct points is contained in exactly λ blocks. The

set {t; v, k, λ} is called the set of parameters of the t− design (X,B).

We have a 3-(7,5,1) design as followed:

{1,2,3,5,6}

{2,3,4,6,7}

{1,3,4,5,7}

{1,3,5,6,7}

{2,3,4,6,7}
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{1,2,4,5,6}

{1,2,4,5,7}

The sets above are happen to be a decomposition of complete 3-uniform

hypergraph K3
7 , which has seven cycles of length 5. We can easily see from the

above Definition 2.2 when k = λ, t = 1, a 1 − (v, k, k) design happen to be a

Hamiltonian cycle of a k-uniform hypergraph.

For the simpleness, we omit the set sign {· · · }.

Complete 3-uniform hypergraph K3
7 can decompose into 5 Hamiltonin cy-

cles of length 7 or 7 cycles of length 5.

Let vertex set be {1, 2, 3, 4, 5, 6, 7}, we have five 1 − (7, 3, 3) designs as

followed

013,135,356,456,246,024,012

015,125,235,236,346,046,014

023,234,345,145,156,016,026

034,134,146,145,126,025,035

045,245,124,123,136,036,056

All the 35 3-subsets divided into 5 lines, every 3-subset of any line is a

hyperedge of hypergraph, every line happen to be a Hamiltonian cycle, 5 lines

are the Hamiltonian decomposition of complete 3-uniform hypergraph K3
7 . We

also can arrange 35 3-subsets as followed:

123,235,356,156,126

234,346,046,026,023

345,045,015,013,134

135,035,056,016,136

034,036,236,246,024

456,146,124,125,256

145,245,025,012,014

Every line happen to be a cycle of length 5, so we have a decomposition of

complete 3-uniform hypergraph K3
7 into cycles length 5.

Definition 2.3. t-wise Γ balance design, is a pair (X,B), Γ is a set consist-

ing of t-uniform hypergraphs, Ω is set consisting of complete t-uniform hyper-

graph, X is a finite set with v vertices, B is a hypergraph on the subsets of X,
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such that for any block B ∈ B, B is isomorphic one of Γ, and every t-subset is

included an only block, denoted by S(t,Γ, v). If replacing Γ by Ω, then we use

S(t,K, v) express S(t,Ω, v), where K is an positive integer set. The number

of element from B come from K.

Base on this definition, we could get a Hamiltonian decomposition of com-

plete 3-uniform hypergraph K3
10 as followed:

012,345,678,123,234,456,567,789,089,019

029,249,479,457,357,356,168,136,018,028

013,035,058,568,468,467,247,279,129,139

124,146,169,679,579,578,358,038,023,024

235,257,027,078,068,689,469,149,134,135

346,368,138,189,179,079,057,025,245,246

034,348,389,589,159,125,127,267,067,046

145,459,049,069,026,236,238,378,178,157

256,056,015,017,137,347,349,489,289,268

367,167,126,128,248,458,045,059,039,379

478,278,237,239,359,569,156,016,014,048

036,369,269,259,258,158,147,148,047,037

This is a Hamiltonian decomposition of complete 3-uniform hypergraph

K3
10, every line is a Hamiltonian cycle, every line is isomorphic the others and

every one is 1-(10,3,3) design of X.

Complete 3-uniform hypergraph K3
10 also can decompose into 10 Hamilto-

nian cycles and 4 cycles of length 5 as followed:

012,345,678,123,234,456,567,789,089,019

036,369,269,259,258,158,147,148,047,037

078,578,568,356,346,134,124,129,029,079

189,689,679,467,457,245,235,023,013,018

056,156,126,127,278,378,348,349,049,059

167,267,237,238,389,489,459,045,015,016

038,138,168,169,469,479,247,257,025,035

149,249,279,027,057,058,358,368,136,146

067,367,236,239,289,589,458,145,014,017

178,478,347,034,039,069,569,256,125,128
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024,246,468,068,028

135,357,579,179,139

048,248,268,026,046

159,359,379,137,157

Every one of the first 10 lines is a Hamiltonian cycle, every one of last 4

lines is a cycle of length 5. Then we get a decomposition of complete 3-uniform

hypergraph K3
10 into Hamiltonian cycles and cycles of length 5 and 10, which

is corresponding to the Definition 2.3 for K = {5, 10}.
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